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The general effect of redundancy on system reliability is analyzed and discussed. Three
types of redundancy are described—active redundanecy, standby redundancy, and active-
standby redundancy—and equations are developed for each type of redundancy. The most
significant contribution is the development of a Poisson-binomial probability distribution
function (PDF) which applies to active-standby redundancy and is the general case of the
Poisson and binomial PDF’s. Special attention is given to the most general case (aclive-
_standby redundancy with start and switching; i.e., a modified Poisson-binomial PDF).
The modified Poisson-binomial is applicable to systems where 1) the operating units have a
constant failure rate characteristic of the operating mode, 2) the standby units have a difler-
ent failure rate (also constant) characteristic of the standbhy mode, 3) all units are subject
to failure when started, and 4) the standby units are also subject to failure when switched into
the system. A rapid and accurate approximation technique for analyzing active-standby
redundancy is also presented. ‘
Nomenclature combination of both which will be referred to as active-
B . . L standby redundancy. Active redundancy can be analyzed
e = mean number of units operating for the mission time by using the binomial probability distribution function
(binomial PDF) PDY); standby redundancy can be analyzed by using th
M = required number of operating units ; LB Rk N mgnt _ oy £ ] ¢ BUBIYEEQ DY USIE The
N = number of standby units available at the start of the oisson PDF. . Act.we—si.a:ndhy _1(*dupdmwy_ can l?e
bt analyzed by using the Poisson-binomial PDT developed in
PDF = probability distribution function this paper. The latter is also presented in a modified and
Qat = 1 — Ra = start failure probability even more general form by including the effects of imperfect
Qaw = 1 — Rsw = switching failure probability subsystem start and switehing probabilities. The final,
(osw = 1 — Rysw = start or switching failure probability general equation presented allows the accurate calculation
u = 1 — Ru = unit failure probability ) of mission reliability for Al active units and N standby units
fyey = mission reliability yvlth M operating units and N for which the standby failure rate is different than the oper-
R B initial standby units s . ating failure rate; all units have a certain success probability
.ty Raw = start and switching success probabilities, respectively f : r : i .
Rutow . or start'mg, and t!le ?\z standby units also haw? a success
Ru = unit reliability = e~ probability for switehing. An accurate am)roxxm:&tton to
M = (1 — 8)™ = reliability of M operating units the Poisson-binomial PDT is also provided for rapid deter-
S,m = Stirling numbers of the first kind mination of the reliabilities of redundant systems. The
! = mission time, hr approximation is obtained by determining a mean number of
o = Mh/As operating units and using this mean value in the Poisson
8 o PDF.
Ir{z) = gamma function of =
€ = the smaller of M and N
@ = MMt 4+ (A — ML Analysis and Discussion
, My Do Opf;:':;;’gh?i]:d sandby fiolle Tatur vt raspee The method employed in the development of the following
reliability equations is the integration of the appropriate
Introduction probability density function. These equations apply only
to units subjected to random failures and which, therefore,
NE method of achieving high system reliability for have constant failure rates. The failure rates may be differ-
long, manned space missions is through the use of high ent for the operating and standby modes, hut they are con-
levels of redundancy, which falls into three distinct cate- stant during a mode. The exponential probability density
gories: active redundancy, standby redundancy, and a function is f(t) = Ae~ ™. The equation for unit reliability
WAugust 31, 1066; revision received February 10, is obtnin(‘(! by integration of this fuuct.ig::;t to O_btni.n the
1967. ~ This work was performed in part under Atomic Inergy corresponding exponential PDF, R, = 7™, “'h't‘h_ is the
Commission Contract AT (11-1)-GEN-8. The authors wish o probability that a unit with failure rate Ay will fail Bfteff
time t.

In the case of complex systems it is necessary to 1) define
all of the combinations of success (success paths), 2) obtain
the appropriate density function for each combination, 3)
integrate cach density function to obtain the expression for
the probability of success due to that combination, and 4)
sum these probability espressions to obtain the total reli-
ability equation. The success paths for a system eonsisting
of one operating unit and two standhy (redundant) units,
a1 4 2 system, are shown In Fig, [ oy examplo, path
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Fig. 1 Reliability diagrams for al -+ 2 system,

Ri2 applics to the case where unit 1 starts the mission and
fails at time &; unit 2 survives in the standby mode until
&, is started and switched into the system at f;, and operates
from 4 to the mission time ¢ Only the relevant suceess
paths are shown (e.g., the survival of units 2 and 3 in the
standby mode for path R, is irrelevant), and a standby unit

~ indicated as being available requires the survival of that unit

in the standby mode until it is required to operate.

The system reliability equations herein are multivariate?
PDI"s and are functions of mission time () and the number
of operating (A7) and standby (N) units. The use of these
functions as multivariate PDIVs is proper for reliability engi-
neering since the substitution of the exponential PDI" into
the Poisson and binomial distributions produces equations
(and hence PDI’s) which are functions of MyN,and £ One
of the requirements of a PIDF is that the sum of the probabili-
ties for all possible conditions is unity. In reliability engi-
neering this sum is divided into the two distinct states of
system suceess and system failure. The reliability then
becomes a truncated PDF consisting of only the terms which
represent success. The complete PDF doces exist, however,
and may be completed by the addition of the terms repre-
senting system failure.

The Tfollowing sections will treat active redundancy,
standby redundancy, and active-standby redundancy—all
with perfect start and switching. The effect of imperfect
start and switching will then be examined.

Active Redundancy

Active redundancy is the simplest and most common form
of redundancy methods. TFor active redundancy 1) all
units (M + N) are operating at the start of the mission (or
the failure rates of the standhy and operating units are equal,
Av = Ao), and 2) the binomial (or negative binomial) PDI
is employed for system reliability caleulations. The bi-

_nomial PDF is basic to the field of reliability.? It is

N
Bu = 3 (M E )= emplemraprinen (1)

n=0

Active redundancy can also be represented by the negative
binomial PDT, which is

e ] B )
© Rayw = E n '-‘1[ 1)[1 — e~ Mta[g=Mt]Y  (a)

n=0
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A briefl discussion of the negalive hinomial DI is presented
in the Appendix.

Equations (1) represent the reliahility of a syslem with
A+ N wmits at the start of the mission where at least 3
units are required to be operating at the end of the mission.

Standby Redundancy

Standby redundancy provides the areatest reliability im-
provement of all redundancy methods. For standby re-
dundancy there are no failures in the standby mode (A, = 0),
and the Poisson PDF is employed for system reliability call
culations.  Although the equations for caleulating the relj-
ability of a system employing standby redundancy are wel-
established,* the equation for a system with one operating
unit and one standby unit (1 4 1) will be developed to
demonstrate the validity of the analytical method. A “1 4
1" system provides two success paths, Ry and Ry (Fig. 1).
The reliability of the first path B, — R, = g™  The
sccond path is deseribed by the following differential reli-
ability: '

dRi2 = Probability [unit I operates from ¢ = 0 to &, and fails
at &y within the interval df] x

Probability [unit 2 operates from ¢, to t]

Since & can vary from time 0 to the missjon time t, the differ-
ential reliability is integrated as follows:

¢
R]” o fo [C‘Mﬁku dh][e—?\u(t*h)} = )\ﬂlc—l\nt

and

R = Ry + Ry = e~ MI(1 4 Aot) (2)

By continuing in this manner, the Poisson PDF for M
active units and N standby units may be obtained and is

o (M

= o— M)
Byw = e ot Z i
ey Bl

which represents the reliability as a function of time of a
system with A1 operating units and N initial standby units.

Active-Standby Redundancy

Active-standby redundancy is a compromise between
active and slandby redundancy. It represents a more
realistic appraisal of the actual situaltion when units are
standing by in a nonoperaling mode, since it allows these
unifs to also experience random failures; henee, pure slandby
redundancy equations do not apply. Since the standby
units are normally subjected to a less severe environment
than the operating units, the failure rale of the standby units
is normally less than that of the operating units; therefore,
active redundancy equations also do not apply. This type
of redundancy should employ the Poisson-binomial PDF
for reliability ealculations; this PDF is developed below. 7

The reliability equation fora “1 4 1" active-standby system
can be obtained by redeveloping the term Ry, and adding it
toR;. Thus '

dltyy = Probability [unit 1 operates from ¢ = 0 to ¢ and fails
at &y within the interval df,] X Probability funit 2
survives in the standby mode from ¢ = 0 to th] X

Probability [unit 2 operates Irom & to t)

Inserting the appropriate probability density function and
integrating gives

Ry = j;t !e—:t.u!:.)\n”’tl][(,—-h,r.”r.w—knu—t.}]

—  — e

(3) .
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Thus,
Bz = 7N/ N)(1 — e~
and since the path 2, is unaffected
Ri = e[l + (/AL — c=M] )

Equation (4) is the Poisson-binomial PDT for a 1 + 1" active-
standby redundant system and has been previously de-
veloped.t®  This equation degenerates to the Poisson PDF
for A, = 0f and to the negative binomial PDT for A, = Xo-

The reliability for o “1 + 2" active-standby redundant
system can be obtained by determining Ry and Ry (Fig. 1)
and adding these terms to Iiq. (4). The result is

L [1 + 2001 = emn 4

Mo\ e (1 — oMy
(A.“) N2 } ®

Sinee each additional standby untt complicates the Poisson-
binomial PDT, the following substitutions are made to facili-
tate the algebra:
a = M(h/N) (for the “1 4 27 system, M = 1)
B=1— ¢ R, = e~
Equation (5) can then be written as
Bz = Ru [l + af + (a + Da(8%/2)] (5a)

The foregoing procedure may be continued with additional
standby units in an cffort to establish a general equation.
When this is accomplished, the result for a “1 + N’ redund-
ant system is

N .
Ry = gu (n + 3 - 1) Bl — ) (6)

where it may be noted that (I — @)% = ¢~ M = R,

In Iq. (6), a is greater than.0, but e« is not necessarily an
integer. The binomial coe[ﬁcients(::)are defined as being
applicable “for all values of z and all positive integers r.””2

FFor example,
(a—|—2) {4+ 2)I
3 © 3 a — 1)!
' _ (@4 2@+ e
B 31

for all values of @. Tor a = 0.5, for example,

(0.5 + 2) _ 2.5(1.5)(0.5)

3 5 = 0.3125

The Poisson-binomial coefficient in Eq. (6) can also be ex-
pressed in terms of the gamma functions as

(n+a—l)=2@_+a)

n nl I'(a)

This may also be evaluated for the foregoing example (n = 3,
a = 0.5)as

nt+a—1y T35 _3@3_'_
( n ) ~3I0(0.5)  6(1.772) 0613

1 Applying I'lospital’s rule as follows:
s — g Mt ;
Ao lim — = Ap lim te— Mt = X\t

A0 ] Ag—+0
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If a different algebraic combination of the terms is employed,
the following equivalent equation is ohiained:

N N ﬁn
Riw = e 35 an 3 (=D)"m8,m-20 (Ga)

m=0 n=m

where 8.0 represents the Stiring numbers of the first kind
and the term (—1)*== 8,0 js the number of permutations
of n things which have exactly m cyeles.®7 Tor example,
the success palhs Rias, Riss, and Rigs each represent four
things, units 2, 3, 4, and 5, having three cycles. (A cycle
in this sense is the replacement of an operating unit with the
next available standby unit.)

Equations (6) represent the Poisson-binomial PDF for a
“1 4 N" system with active-stundby redundancy. Equations
(6) can be modified slightly to obtain the general Poisson-
binomial PIIF for an “Af 4 N system. This is accomplished
by replacing 2. by E. and using the more gencral form of
@ = M(Ao/Ns); Le, (1 — B)= = B2 The general equation
foran “Af + N’ system is

N
Buw = > ("Te  Dpa-pe @
n=0 T
or
N N ﬂnl
RJ!I+;V = R“M Z: o E (-—-l)" m S, (m) "T_LT (73)

m=0 n=m

or

X (a+ N , —n
Buw = 3 (H N )pa - prrn

each of which represents the reliability as a funetion of time
of o system with 4 operating unils (Ag) and N initial standby
units (A,). Equations (7) represent the Poisson-binomial PDF
foran “Al 4 N” system with active-standby redundancy.
This PDI" is the more general form of the Poisson and-bi-
nomial PDIs and provides a cohesive element in under-
standing the relationship between active, standby, and active-
standby redundancy. 1t degenerates to the negative bi-
nomial or binomial I’DI' for A\, = X and to the Poisson
PDE for A, = 0. (This may be demonstrated for A\, = 0
by the successive application of 'Hospital's rule.) Equation
(7) provides a simplified equation that uses noninteger,
negative binomial-type coeflicients to expedite calculations.
Equation (7a) presents the coefficients of the terms in a form
that can be studied using combinatorial analysis. Equation
(7b) is similar to Eq. (7), but it uses noninteger, binomial-
type coefficients.

Figure 2 shows the manner in which the Poisson-binomial
PDF covers the range between the Poisson and binomial
PDF’s for a “2 4 3" system as A, varies from 0 to Aq for
three values of Aot (referring to the three solid eurves for
which E,, = 1.0; the remaining curves are discussed later).

It should be noted, however, that the magnitude of the
standby failure rate is not bounded by the operating failure
rate; i.e.,, A, can be greater than A,. This is shown in Fig.
Bfor At = 0.3; M = land 2; and N = 1,2, and 3. The
reliability curve starts at a value corresponding to the
Poisson PDT for small values of A,/Aq, passes through the
binomial PDI value for A,/Ay = 1.0, and approaches e = At
for very large values of A,/A; where the standby units fail
too rapidly to be useful.  The latter results (A, > Ag) would
apply in a case where, although it would be more reliable to
operate all units in parallel, other system constraints necessi-
tate standby redundancy at the higher standby failure rate.
The system reliability may still be improved significantly
over the reliability of a system with no redundancy.

In addition to Eqs. (7), a Poisson-binomial approximation
has been developed Tor quickly estimating system relinbilily
with active-standby redundaney. The approximalion can
be employed using standard tables of the Poisson PDI, thus
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Fig. 2 Reliability of 2 2 + 3 aclive-standby redundant
‘ system.

allowing rapid estimates of reliability and extensive system
parametric studies.

The Poisson-binomial approximation is based on the
hypothesis that the binomial PDI is a special case of the
Poisson PDF. In the binomial PDF, the number of units
subjected to the failure rate is not constant since "“A- 4 N”
units are available at the start of the mission and at least
M units are operating at the end of a successful mission,
Thus, in order to use the Poisson PDF as an approximation
to the binomial PDF, it is necessary to determine the mean
number of units () operating for the entire mission time.
"The Poisson PDF is employed as follows as an approximation
of an active-standby redundant system:

N gn
—8 i
_ RM+N =e E o (8)
n=0 """
0.9938
N=3
0.999% —
0.999
0.9
Aol =03
0.99% Taws Rerisiln
— M
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T 003 006 01 03 06 10 T30 60 100 300 600 1000
] FAILURE RATE RATIO (31

Fig.3 Reliability of an A 4 N aclive-standby redundant
' system,
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where -
0 = Mt + (M — AN AL (9)

and _
N LN +1)
m = [1[ (a1 +j>} (10)
i=0

The term % is the mean number of units operating for the
mission time; the factor (i — M) results since, of the @ units
operating for the entire mission time, 1 of these are subjected
to the operating failure rate Ay whereas the remaining units
are subjected to the standby failure rate A,. The general
value of i is obtained by setting A, = A, and equating the
resulting expression, Eq. (8), to the negative binomial PDF.
Thus,

o= Mt i “(’ﬁi?t)" = ¢~ Mt % (JJ + Af — 1) %
x

n=0 z2=0
(L — @R 1)

which is the defining equation for 7. Tt is apparent that
fii is a function of M, N, and M. The equation presented
previously for m, Bq. (10), was derived by utilizing the
Taylor Series representation of Tq. (11) and letting At —
0. The value of # is a generalized geometric mean and might
appropriately be called a binomial mean. Thus, for At —
0, 7 is independent of A, as indicated in Iiq. (10). In fact,
as is shown by the dashed lines in Fig. 2, the value of & as
obtained from Lq. (10) results in a good approximation to
the Poisson-binomial PDF even for values of A approaching
unity, thus indicating a weak functional relationship be-
tween Aot and 7. The Poisson-hinomial approximation is
scen to be quite accurate over its range of definition 0 <
As < Ao and is easicr to use than Eq. {7) in that, once the
equivalent failure rate function 8 is computed using Fgs.
(9) and (10), the tables of the cumulative Poisson distribu-
tion may be used to obtain the system reliability.  For the
“2 4+ 3" system presented in Fig. 2, i = 3.31 from Iiq.
(10).

Unit Start and Switching Effects

A niodified Poisson-binomial PDT that includes the effects
of imperfect unit start and switching is also of practical in-
terest. The equation is derived for the general ease of active-
standby redundancy (A, = Ap). Ilowever, the results will
also be useful, in the appropriate limiting forms, for active
redundancy (A, = Xp) or standby redundancy (A, = 0).
The difference between the start and switching reliabilities

UNIT 1}

VNIT 2} FAILS TOSTART AT L =0

|
UNIT 3 RO
wnr o) G @, L
varsfo — B ®

1
UNIT 6] FAILS IN STANDBY PRIOR TO 13'0R FAILS TOSTART OR SWITCH AT I3

g )

NP p— — — =

TINE

(O OPERATING UNIT
L ] STAHDRY UNIT AYAILABLE

e

—_—— A

Fig. 4 Relinbility diagram of success path Ry

[
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" (or probabilities, since cach is assumed to be independent of

time) is as follows: the initial A7 active units are alrcady
switched into the system and must only be started (Ry)
whercas the standby units, when called upon, must start and
be switched (Raww) into the system.  Since o similar analytical
approach is employed to obtain the final equation, only one
success path will be presented employing the start and switch-
ing probabilities. A complex path will better illustrate the
probability logic involved; thus, one path of a “2 4 5” system
will be examined.

The success path Rigasm is shown in Fig. 4 and is inter-
preted thusly: at the beginning of the mission, unit 1 is
started, unit 2 fails to start, and unit 3 is started and switched
into the system; at &, unit 1 fails and unit 4 is started,
switched in, and completes the mission; at &, &, > &, unit 3
fails and unit 5 is started and switched in; at &, unit 5 fails,
unit 6 is not available (it has failed either in standby, fails
to start, or fails to switch), unit 7 is started, switched in, and
completes the mission. Hence, letting Q.. = 1 — R,

t fa ]
Risae = j:ax()j:z:oﬁ,=() [RatG"M“)\odhl[(;_““] %
[Rutowe ™M=, ] [Ratawe =2 Nodly ] [e= ] X

[meewh(ta-tz) ?\odla][l — mee_“"] [e“"“‘][R,gswe_h(‘_")]

Integrating and letting Quew = 1 — Rywow

A
B = e ™ R,.Q,. ( xo) ¥
1 [ — G—Ast)u . (] " e—M)a .
16 [ 3 Ru!.sw Qstsw + 3 Boisw j|

Substituting @ and # as before
Ruam = e R0y (a?/16) X
[(B%/3) Ratew'Qutaw + (BY/4) Rorant]

The general equation resulting from this approach is as fol-
lows:

N-—k
Bsryn = I}cf) Qu kR M —* Z & m 1) X
n=0 o
N-— k n
Br (1l — B)= (N) QatawRoran™ ™= (12)
or
M N—k N—&
Raenw = (A )QM R, Mk Z am E (_])u m 3

ﬂn N= k n N
Sﬂ(m:’ ] 1 - « taw™. sl.sziz
da-o (e (120)

where € is the smaller of 3 and N since the first term is re-
lated to the number of start failures of active units at the
beginning of the mission and this number cannot exceed the
smaller of M and N. Also in this equation by definition?

(k) = 0fork <zandz>0; also (k) =
z 0

of k, including & = —1. liquations (12) represent the most
general case studicd; all previous system equations can be
derived from Iigs. (12) by the appropriate simplifying as-
sumptions (and certain algebraic rearrangements, where
NeCessary). ‘

The last summation in Eqs. (12) can also be written in
negative binomial form if desired:

N—k—n
Z ) (N) QtswRuran¥ ™= =
=0 i

Nk—n<+k+n

1 for all values

) Qs lseratsw“ +x
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Although the normal binemial form allows a more compaet
notation, the expansion of terms is simpler and more efficient
when the negative binomial form is used.  This is illustrated
in the following (\\mnpl( and is discussed in more detail in
the Appendix.  "To aid in the use of these expansions, Bgs.
(12) will be written in expanded form for a “2 + 3”7 systen.
Trrom 18q. (12), using the negative binomial form of the third
summation,

Rrys = RAR + aBRou(l + Quiow + Quean?) +
(a + DalfY2) Ruen(1 + 2Qutew) + (o + 2) X
(a + Da(BY3) Rl + 2QuRe[Rotan(l + Quryw +
Qovsw?) + @fRuw®(l + 2Quiw) + (@ + Da(BY2) X
R,,_.iw:’] + Qut2 [Rstawz(l Jr QQmw) + aﬁRstawa]}

From Eq. (12a), using the normal binomial form of the third
summation and after inserting the numerical values for the
Stirling numbers where, by definition S,.(“’ =0forn >0
and S,® = 1,

Qstswa] + a

2 3
gl_ (Rshaw3 + 3RsluwﬂQut5w) + 2_'6_

RZ+3 = RstzRuz{ {Rulswa + gRataWQQstsw + 3thstsluwz +
[ﬁ(Rslswa + BRSL‘:W!QSESW + SRuuwQauwz) +

Rntsnx] 'l_
zlaw ] +

al‘sw } + 2QalRat R {[Ralsw3 + BRnanzQutnw +

2
az [’g!- (I‘::si,:lw;l + SRB““’ Qsts“) + 3 B

3‘33
3t

3lestanslsw2] + 24 [ﬁ(RsLawa + 3Rutsw2Qutuw) +

2 2
“gl“ 2{]3 Basw } + Q2R X

{[Rstsw:; + SRstawﬂquw] + aﬂRutqws}

The equivalence of the two expansions is easily demonstrated.

Referring back to Fig. 2, the effect of R.. and A,/ on a
“2 4+ 3" system (R, = 1.0) may be seen for three values of
Mot.  As shown by the curves for A = 0.10, the difference
between the Poisson and binomial reliabilities decreases as
R decreases.  This indicates that for Q. == Mt (and 0 <
As < Ao), the standby units fail more often during start than
in the standby mode, regardless of the standby failure rate.

Figure 5 presents Ry 5 as a function of the start and switch-
ing reliahilities for fixed values of Nt and A,/ Ne.  Asexpected,
the start reliability is significantly more important than that
of switching since all five units must start whereas only the
three redundant units must be switched into the system.

A more practical type of plot is shown in Fig. 6, where the
reliability of a “1 4+ N system is shown as a function of the
redundancy level N. (A plot of this type is actually valid
only at integral values of N; the points are connected for
clarity.) This type of plot is used, for example, when it is
known that one unit must be operating for the mission time,
the mean number of operating failures (Af) during the
mission is 0.20, and it is required to determine the number
of redundant units (N) nccessary to achicve a specified
mission reliability.  The.six curves illustrate the variation in
system reliability for three values of A, and two values of I,
and R,,. Thus, for a mission reliability (2,,~) goal of 0.998,
the number of redundant units required varies from two for
A. = 0 with perfect start and switching (B.. = E.v = 1.0) to
five for A, = A with Ree = Ry = 0.9, .

Frequently this type of application also leads to reliability
tradeofl studies to arrive at the optimum method of achieving
the reliability goal.  Such a study is presented in Fig. 7 for a
“1 4 3" system——a case where M and N are specilied and it

Rstawa] +
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is desired to examine the relationships between the operating
failure rate, the standby failure rate, and the start reliability
to obtain the mission reliability of 0.999.

Table 1 presents a summary of the equations developed in
this paper. This table is self-explanatory and includes the
three modes of redundancy as well as the effects of start and
switching reliabilities, both separately and in combined form.
The equations presented for R,, = 1.0 are obtained from
Eq. (12) after an algebraic rearrangement.

It is also of interest to present the system reliability equa-
tion in a form that allows definite interpretation of the indi-
vidual terms. Equation (12a) can be written as

€ N—k
M (A Mot)
Byran = E (}G ) Quit Tt Z _n;l_ X
' k=0 m=0 :
N—k i 1 — —Aslm
m! e
— Mot E (_..l)n—'ms (m) —° ‘:_______] e
¢ n
nl At
n=m
N—k—n N
[-l e 6_?\8:]"_'" ZO ($) Q!hwx[ﬂutaw“‘ i
2=
0.93998 T
0.999% e /,
= i
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Fig. 6 Eflect of redundancy on a 1 + N system,
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The general term of the foregoing equation represents a cer-
tain combination of probabilities:

P(ﬂf; N: k; m, n, 117} = [({Lj) Qathgl;M#k:l X

(jlfkut)m —.M)\ut][ — m! 1 — e~ Mt\m
l: ml° (=18, n! At =

R [

P(M, N, k, m, n, ) represents the probability of success of
an “Mf + N" system with exactly k start failures at the begin-
ning of the mission, exactly m random failures in the operat-
ing. mode (o), exactly n — m random [ailures in the standby
mode (A.) with exactly m standby units available as required,
and exactly x start or switching failures of the standby units
(Tmex =N — k& — n).

Conclusions

The conclusions to be drawn from the foregoing presenta-
tion can best be summed in relation to the following con-
tributions to reliability engincering:

1) The Poisson-binomial PDF has been developed as the
correct method of caleulating mission reliability for active-
standby redundant systems where all units have equal operat-
ing (constant) failure rates and the standby units have a
different (constant) failure rate in the standby mode. It is
expected that the application of the Poisson-binomial PDF
will not be limited to reliability engineering just as that of the
Poisson and binomial PIDDF’s is not so limited.

2) The modified Poisson, binomial, negative hinomial, and
Poisson-binomial PDI”s, which include the effects of unit
start and switching, have been developed.

3) A clear, concise, and exact method of obtaining complex
reliability equations by success path identification, integra-
tion of the appropriate probability density functions, and
summation of the success path probabilities was presented.
This method can be used to develop equations for systems
with other failure rate modes; e.g., where the operating fail-
ure rates of A7 and N units are different.

4) The Poisson-hinomial PDF which provides additional
information and understanding of the Poisson and binomial
PDI’s, particularly regarding the use of hinomial and nega-
tive binomial-type, noninteger cocfficients, wns developed,
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Type of redundancy

Start and switching
elfects

Active-standby redundnney (A, 5 A) or

Standby redundancy (A, = 0)

aclive redundancy (As = A)

(no standby failures)

General

Start (I2,) and switch-
ing (LEs) relinbilities
are included. The
N redundant units
must be started
and switched into N—k—n
the sytem; the M (1 — e Matyn(e— Moty Z
initial operating z=0
units need only be
starled.

Byen =

ﬂf k M-k =
2o (o ) Qe Z
=0 ™

Perfect unit switching
(Rnw =1 HM-;-N E (n + ™= 1)([
All units (M and ) n=
must be started;
swilching is assured
(or absent).

Perfect unit starl,

C (B =1)

Start is assured (or
absent). The only
degradation in reli-
ability results from
swilching the re-
dundant units (N)
into the system

(st =1~ -ﬁ’-sw)-
Perfect unit. start and N (

I

Rarn

switching Raan Z
(I[)-sw == Rut == I) n=0
The applicable equa-
tions ave the stand-
ard Poisson and
the new Poisson-
binomial probabil-
ity distribution
funetions.

I

n+a_])(]~e

n

function

(2

N—k—n
(2{) Q:tsszquwN T e Aot Z (N) insw staw Nz
z=0

n=0

—hat)(g— Mhat) 3¢

N
nta = 1\ o —Ntyn(e— Mo

N—n
> (N) Quleyu =
—o \T

=Ny (g — Mhat)

Poisson-binomial probability distribution

Rarywn
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= QslkRal ALK X
= (%) =
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Ry = Z @Ehet) e~ Mt ¢

n=0 n[

Z (Mr ‘:: N) QuuElt M N = Z (ﬁf + N) Q7R MV —=
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e— Mt 3¢

(N ) Quu R~

Ryin =

A[:\ut
Z (A not)™

n=0

z=0

Z (M“ o — Mt

Rargn

Poisson probability distribution function

a 4 ig the smaller of M and N, o = M(Ao/M), Rotaw = Ratflaw, Qutew = 1 — Rutaw, and Qo = 1 — Ru.

Appendix: Negative Binomial PDF

The negative binomial PDT is not commonly used in reli-
ability analysis whereas the binomial PDF is perhaps over-
used. This is unfortunate since 1) the negative binomial
PDT is the most expeditious method of determining the level
of-redundancy required to meet a specified reliability objective
and 2) the negative binomial PDT is equivalent to the bi-
nomial PDT for the calculation of mission reliability; in
fact, it is simply an algebraic rearrangement of the binomial ®
It should be noted, however, that the terms of these PDF’s
sum differently to unity. The binomial PDF consists of a
finite population (M + N) with the sum of the finite terms
being equal to unity; the negative binomial PDF consists of
an infinite population (similar to the Poisson PDF) and
approaches unity as the number of terms approaches infinity.

The utility of the negative binomial PDI, as contrasted
to that of the binomial PDTF, may be demonstrated by a
practical example. Suppose that for a particular mission 1)
at least two units are required; 2) the mission reliability
objective (Rayn) is 0.9999; 3) the reliability of a single unit
(R.) is 0.9; and 4) the required number of redundant units,
N, is to be determined.  The binomial PDTF will be considered
first:

Ravuw = R0 30 (M + N) RN =7 (n

n=10

\
=

The inconvenience of using the binomial PDF for this type
of problem stems from the fact that the number of standby
units N appears in the binomial coefficients; thus a separate
expansion is required for each value of N chosen. TFor ex-
ample, if N = 2,

Rage = R.2 Z )R”"Q“—R‘+4Ru3Qu+GRﬂQ2

Each term in the preceding PDTF may be identified as follows:
R.*is the probability of all four subsystems succeeding even
though only two are required (i.e., the probability of exactly
zero failures); 4R.%Q. is the probability of any three units
succeeding and the last unit failing (i.e., the probability of
exactly one failure); 6R,2Q.? is the probability of any two
units succeeding and the remaining two units failing (i.e., the
probability of exactly two failures). TFor By = 0.9, By =
0.9963, which is inadequate. Increasing N to three units re-
sults in

Ryys = BB+ BRAQ + 108£.2Q.% + 10R.2Q.2 = 0.09954

which is still inadequate.
four units yields

- Expanding once more for an N of

Ry = RS+ GRSQL 4 16RIQ.2 + 20R.20Q.° +
15R.2Q." = 0.999945
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which achieves the reliability objective of 0.9999; therefore,
six units would be required.

Repeating the analysis with the negative binomial PDT
indicates the efficiency of this method for this problem. The
negative binomial PDF is

n+4+ M -1 .
n ) 9

N
RM+N = RuM Z

n=0

For Af = 2,

X il 1 x
Roww = R 35 (7 )Qu" =R ), (n+ 1)Qu
n=0

n=0
Boonw = R + 2Qu + 3Q.2 + ... + (N 4 1)QN]

Thus, only one expansion is required for any number of re-
dundant units; the addition of another redundant unit simply
adds another term to the expansion. For example, if N = 2,

R2+2 = Ru2(1 "l" EQH + 3Qu2)

As in the binomial PDF, each term in the negative binomial
may be identified as follows: R.? is the probability that the
first two units will complete the mission.. No standby units
are required and success or failure of such units is immaterial

J. SPACECRATT

(i.c., it is the probabilily of exaclly zero failures of active or
operating unils); 21,20, is the probability that either one
of the first two units will fail to complele the mission and that
the first standby unit to be called will complete the mission
(i.e., the probability of exactly one failure of an active unit);
31,2 is the sum of the probabilitios that 1) either one of the
first two units will fail, the first standby unit will fail, and the
second standby unit will complete the mission; and 2) both
of the first two units will fail and the two standby units will
complete the mission (i.e., the probability of exactly two
failures of either active or standby units). For N = 3,
Royy = Raoys + 4R.Q.P, ete., until the required reliability
objective is achieved. The equivalence of the two expansions
can be demonstrated by factoring R,? from the binomial ex-
pansion and replacing the remaining R.'s with 1 — ¢,; the
result will be the negative binomial expansion. This equiva-
lence has been demonstrated for the general case® The
coefficients of both the binomial and negative binomial
PDF’s may also be obtained from Pacsal’s triangle, as
shown in Fig. 8.

It may be concluded that the negative binomial PDF pro-
vides the simplest and most expeditious method for reli-
ability analysis when it is necessary to calculate the number
of redundant units necessary to meet a specified mission reli-
ability objective. (A computer program for ealculating sys-
tem reliability as a function of Af and N is also simplified
by the use of the negative binomial PDF.)
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